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Abstract
Photographic identification (photo ID) is a well-established, non-invasive, and relatively cost-effective technique to col-
lect longitudinal data from species that can be individually recognised based on natural markings. This method has been 
improved by computer-assisted pattern recognition software which speed up the processing of large numbers of images. 
Freely available algorithms exist for a wide range of species, but the choice of software can have significant effects on the 
accuracy of individual capture histories and derived demographic parameter estimates. We tested the performance of three 
open source, semi-automated pattern recognition software algorithms for harbour seal (Phoca vitulina vitulina) photo ID: 
ExtractCompare,  I3S Pattern and Wild-ID. Performance was measured as the ability of the software to successfully score 
matching images higher than non-matching images using the cumulative density function (CDF). The CDF for the top 
ranked potential match was highest for Wild-ID  (CDF1 = 0.34–0.58), followed by ExtractCompare  (CDF1 = 0.24–0.36) and 
 I3S pattern  (CDF1 = 0.02–0.3). This trend emerged regardless of how many potential matches were inspected. The highest 
performing aspects in ExtractCompare were left heads, whereas in  I3S Pattern and Wild-ID these were front heads. Within 
each aspect, images collected using a camera and lens performed higher than images taken by a camera and scope. Data 
processing within ExtractCompare took  > 4 × longer than Wild-ID, and  > 3 × longer than  I3S Pattern. We found that over-
all, Wild-ID outperformed both ExtractCompare and  I3S Pattern under tested scenarios, and we therefore recommend its 
assistance in harbour seal photo ID.
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Introduction

Recognising individual animals is an important tool in the 
monitoring of wild populations (e.g. Wells and Scott 1990, 
Rotella et al. 2012, Letcher et al. 2015). For many species, 

individuals are artificially marked using a wide range of 
techniques, including bird ringing (e.g. spotted owl Strix 
occidentalis; Zimmerman et al. 2007), freeze-branding (e.g. 
Chiroptera spp, Sherwin et al. 2002), colour-marking (e.g. 
Satyrinae spp, Morton 1982) and tagging (e.g. pink abalone 
Haliotis corrugate, Button and Rogers-Bennet 2011). How-
ever, for some species individuals can be distinguished from 
one another from natural markings such as patterning and/or 
scarring (e.g. Asian elephant Elephas maximus; Goswami 
et al. 2007, whale shark Rhincodon typus, Bradshaw et al. 
2007, wild horse Equus ferus, Vernes et al. 2009). These 
species can be photographed and, if the image is of suf-
ficient quality, individuals can be identified. Photographic 
identification (photo ID) is a widely used, non-invasive and 
relatively cost-effective method to study the distribution and 
life-history parameters of wild populations (e.g. Thompson 
et al. 2008; Mackey et al. 2008; Gore et al. 2016; Langley 
et al. 2020).
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A number of phocid seal species have individually unique 
pelage patterns which remain stable through adulthood, 
enabling populations to be monitored long-term through 
photo ID (e.g. grey seal Halichoerus grypus; Hiby et al. 
2007, Saimaa ringed seal Pusa hispida saimensis, Koivu-
niemi et al. 2016, harbour seal Phoca vitulina, Yochem et al. 
1990). While there is slight variation in the pelage colour 
and spot density among harbour seal sub-species, it is not 
consistent enough to confidently identify to sub-species level 
(Kelly 1981; Cunningham 2009; McCormack 2015). The 
repeated identification of individuals within species has been 
successful for three of these harbour seal sub-species: P. v. 
richardii in the northeast Pacific (Yochem et al. 1990), P. v. 
concolor in the northwest Atlantic (McCormack 2015), and 
P. v. vitulina in the northeast Atlantic (Cunningham 2009).

The matching efficiency and error rates of photo ID stud-
ies have been improved by the introduction of computer-
assisted pattern recognition software (Arzoumanian et al. 
2005; Caiafa et al. 2005; Morrison et al. 2011). Computer 
algorithms assist in the photo ID of species that have par-
ticularly fine-detailed patterning, and/or when dealing with 
large databases (e.g. Andrzejaczek et al. 2016; Germanov 
et al. 2019; Langley et al. 2020). Freely available algorithms 
exist for a wide range of species, but the choice of algorithm 
can have significant effects on the derived demographic 
parameter estimates. Misidentification of matches can intro-
duce false positives (i.e. two different individuals matched 
to the same ID) and/or false negatives (i.e. one individual 
given two IDs). For example, a high false-acceptance rate 
results in an under-estimation of population size, whereas a 
high false rejection rate inflates estimates of population size 
(Hammond et al. 1990). The false-acceptance rate can be 
reduced to effectively zero by visually confirming potential 
matches, whereas the false-rejection rate is subject to mul-
tiple variables and so should be calculated and reported per 
analysis (Hastings et al. 2001; Cunningham 2009).

Here we focus on three freely available pattern recogni-
tion software programmes: ExtractCompare,  I3S Pattern and 
Wild-ID. ExtractCompare was originally developed for grey 
seals (Hiby and Lovell 1990) but has since been extended to 
other species (e.g. Eurasian lynx Lynx lynx, Gimenez et al. 
2019; Amur leopard Panthera pardus orientalis, Jiang et al. 
2015, Vitkalova and Shevtsova 2016) and is currently the 
only pattern recognition software which has a harbour seal 
specific model. The software builds a three-dimensional sur-
face model from reference points in a manually annotated 
image. Pattern cells are then extracted from multiple aspects 
of the body (i.e. multibiometric identification, Jain 2007) to 
compare the patterning on non-planar surfaces (Hiby and 
Lovell 1990). Pairs of images are ranked by similarity scores 
and matches are manually confirmed. The software presents 
all potential matches, but a similarity score threshold can 
be assigned to streamline the processing of large datasets.

The interactive individual identification system  (I3S) has 
multiple versions designed to extract and compare natural 
markings from a range of different species.  I3S Pattern was 
designed for species with hard to annotate markings such 
as lionfish (Pterois volitans, Chaves et al. 2016) and turtles 
(Calmanovici et al. 2018). It employs a SURF (speeded-up 
robust features) detector and descriptor, which first detects 
point correspondences between images, then describes the 
area of interest and detects matches between these areas (Bay 
et al. 2008). This is robust to noise, and variation in image 
scale and orientation, whilst computing faster than pre-exist-
ing alternatives (such as the SIFT operator described below). 
Similar to ExtractCompare, images are manually annotated 
with morphological reference points and an extractable area, 
although these are specified by the user at data entry, along 
with the number of potential matches presented.

Wild-ID was specifically designed to assist in the pro-
cessing of large datasets generated by monitoring popu-
lations using camera traps. The software employs a SIFT 
(scale-invariant feature transform) operator which extracts 
distinctive image features whilst accounting for image scale 
and rotation (Lowe 2004). The images are cropped prior to 
data entry as the software does not distinguish the pattern 
of the subject from the pattern in the background (i.e. the 
noise, Bolger et al. 2012). The software pattern comparison 
function is not species-specific which enables its usability 
across a wide range of taxa, from amphibians (Bendik et al. 
2013; Mettouris et al. 2016; Pereira and Maneyro 2016) to 
mammals (Bolger et al. 2012; Halloran et al. 2015). The 
standard version of the software then presents the top 20 
potential matches which require visual confirmation or rejec-
tion (Bolger et al. 2012).

The aim of this study was to test the performance of 
these three freely available pattern recognition software pro-
grammes for the individual recognition of northeast Atlantic 
harbour seals (P. v. vitulina). Photo ID data were collected as 
part of an ongoing project investigating the regional decline 
in harbour seal numbers around Scotland (Arso Civil et al. 
2016). Here, software performance was measured as its abil-
ity to successfully score matching images higher than non-
matching images (Matthé et al. 2017). We investigated the 
effect of the data collection methods and the aspect of the 
body from which the pattern cell was compared. Data pro-
cessing time was also compared between the three software 
programmes.

Methods

Data collection

Photo ID data were collected from harbour seal haulout 
sites in Kintyre, the Isle of Skye and Orkney (Scotland), 
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during the breeding seasons (June and July) of 2016, 2017 
and 2018. In Kintyre and Orkney, data were collected during 
dedicated land-based surveys from cliff tops and beaches, 
50–150 m from harbour seal haulout sites, using a digiscope 
system comprising of a DSLR camera attached to a scope 
(Swarovski ATS 80 with  × 20–60 eyepiece and TLS-APO 
30 mm). On the Isle of Skye, data were collected from small 
tourist boats that circumnavigate skerries where harbour 
seals haul out, 5–10 m away from the boats, using a DSLR 
camera with an 80–400 mm zoom lens.

Photographs were graded for quality on a scale of 1 (poor) 
to 4 (excellent), following a protocol adapted from Cunning-
ham (2009), based on the focus of the image, the angle of the 
seal to the photographer and the clarity of the pelage mark-
ings (i.e. lighting, wet/dry, moult). Only images assigned 
a quality  ≥ 3 were used in this analysis. Matches between 
pairs of images were initially found manually and confirmed 
by a trained expert. A catalogue of individual harbour seals 
with uniquely identifiable IDs was built and used to generate 
databases to test the performance of each software.

Database construction

Multiple databases consisting of pairs of images from indi-
vidual harbour seals were constructed based on how the data 
were collected (scope, lens) and which aspect of the body 
the pattern cell was extracted from (front head, left head, 

left neck, left flank, Fig. 1). We excluded images from the 
right-hand side of the body as the algorithms should perform 
as well with these as the left. We ensured that each image 
from a single individual were collected on different sam-
pling days, which avoided the likelihood of the backgrounds 
matching (seals return to the water on each tide). Front head 
aspects were images of seals facing the camera lens and 
included both eyes; left head aspects included the full side 
of the head including the nose, eye and ear; left neck aspects 
included the area between the ear and the fore-flipper, and 
left flank aspects included the area between the fore-flipper 
and the pelvis. Flank aspects were not available from the 
Isle of Skye data as the photographer was often too close 
to the seal to capture the entire body with a lens. Databases 
included pairs of images from all available individuals for 
each data collection method and aspect; this ranged from 65 
to 178 individuals.

Data processing

We tested the performance of pattern recognition algo-
rithms in detecting the one matching image in a set of 
non-matching images. To standardise the methodology 
across software (each has slightly different processing 
methods), data were entered in two batches and only the 
images with the top 20 similarity scores were manually 
inspected. Manual inspection in our study was of the 

Fig. 1  Aspect specific reference points and extractable areas used to 
compare the pelage pattern of harbour seals using ExtractCompare, 
 I3S Pattern and Wild-ID. Top row (ExtractCompare) reference points 
(yellow dots) and extractable area (red box). Middle row  (I3S Pat-

tern): reference points (blue dots) and extractable area (green box). 
Bottom row (Wild-ID) Wild-ID does not use reference points and so 
the extractable area is the cropped aspect of the subject



 I. Langley et al.

1 3

image names which included the individual ID, but in a 
real-world scenario this would be manual inspection of 
the pelage. Batch 1 was entered first, containing a single 
image of each individual in that database. Batch 2 con-
tained a second different image of each individual and was 
then entered systematically and compared to batch 1 (i.e. 
the library). Each database (n = 7) was run through each 
of the three software, except for databases containing front 
heads (front head aspects cannot be processed in the cur-
rent ExtractCompare harbour seal model); this resulted in 
19 trials. The process was timed for each trial, from the 
first stage of data preparation through to the final stage of 
match confirmation.

ExtractCompare

For ExtractCompare, images were reduced in size (i.e. 
cropped) prior to entry into the Microsoft Access database 
as in the authors experience, this speeds up the processing 
time. This software uses multibiometric identification and 
the pattern can be extracted from up to five aspects of the 
body. However, this is subject to data availability, and chest 
and abdomen aspects were underrepresented in our data. For 
this analysis, we focussed on left heads, necks, and flanks. 
The left head aspect covers an area behind the eye which 
includes the ear (Fig. 1a), the left neck aspect is the area 
between the ear and the fore flipper (Fig. 1b), and the left 
flank aspect is the area between the fore flipper and the pel-
vis (Fig. 1c). Images were annotated with the outline of the 
body and morphological reference points which are specific 
to each aspect in question, but include the base of the skull, 
chin, nose, eyes, ears, post-orbital vibrissae, flippers, and 
pelvis (Fig. 1).

I3S Pattern

Cropping of images was not required for  I3S pattern, and as 
far as possible, reference points and extractable areas were 
specified so as to be as comparable across software as pos-
sible. For front head aspects, the reference points identi-
fied were the right eye, the left eye, and the nose, with the 
general identification area being a polygon from the eyes to 
the top of the head (Fig. 1d). Left head aspects were identi-
fied by the nose, the left eye and the left ear, and the area 
extended from the corner of the mouth to the back of the 
skull (Fig. 1e). Left neck aspects were identified by the nose, 
the post-orbital vibrissae, and the fore flipper, with the area 
extending from the corner of the mouth to the fore flipper 
(Fig. 1f). Finally, left flank aspects were identified by the 
nose, the fore flipper, and the pelvis, with the identifiable 
area extending from the fore flipper to the pelvis (Fig. 1g).

Wild‑ID

Wild-ID differs from the other two software programmes in 
that the pattern is not extracted from an aspect of the sub-
ject but is compared across the entire image. Images were 
therefore cropped to include only the desired aspect of the 
subject with as little of the background noise as possible. 
To make the analysis comparable across the three software 
programmes, we cropped images to the same aspects as with 
ExtractCompare and  I3S Pattern: front head (Fig. 1h), left 
head (Fig. 1i), left neck (Fig. 1j) and left flank (Fig. 1k).

Performance analysis

The pattern recognition software programmes used in this 
analysis are described as semi-automated, as all require a 
final manual confirmation stage where the user has to accept 
or reject each potential match. This reduces the overall 
likelihood of false acceptance (Sacchi et al. 2016). For the 
purpose of this study, we focused on the recognition rate, 
defined as the ability of the algorithm to successfully score 
matching images higher than non-matching images (Mat-
thé et al. 2017). The image filenames (which included the 
individual ID) of the top 20 ranked similarity scores were 
visually inspected for each trial to manually confirm or reject 
the potential match. The cumulative density function (CDF) 
was calculated for each rank by dividing the cumulative 
sum of matches found by the number of matches available, 
and the corresponding two-sided 95% confidence intervals 
(based on the binomial distribution) were estimated using 
the binom.test function in R (R Core Team 2019). For a 
software to perform well, the CDF should reach one within 
the fewest ranks possible, i.e. if the match is not ranked 
high enough, the user could miss this (depending on any 
assigned similarity score threshold) and the false-rejection 
rate would increase. More generally, the lower down the 
potential matches a true match is ranked, the more time is 
required for the user to find the match.

ExtractCompare,  I3S Pattern and Wild-ID differ in data 
processing methodology and so processing was timed for 
all trials. The different stages were made up of both manual 
and automated steps. To run an image through ExtractCom-
pare, there are five distinct stages: cropping, data input, 
pattern extraction, batch comparison and visual confirma-
tion. In  I3S Pattern, the stages of data input (pattern extrac-
tion, comparison, and confirmation) are combined into a 
single step (combining manual and automated stages), and 
in Wild-ID, there are four distinct stages: cropping, input/
extraction, comparison and confirmation. Each stage from 
data pre-processing to visual confirmation was timed sepa-
rately and divided by the number of images to give the time 
in minutes and seconds required to process a single image 
(data processing rate).
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Results

Across each tested scenario, Wild-ID outperformed both 
ExtractCompare and  I3S Pattern for harbour seal pattern rec-
ognition (Table 1, Fig. 2). This trend was most pronounced 
when comparing the pelage pattern from the left head 
(CDF = 0.49–0.66) and neck regions (CDF = 0.45–0.64), 
regardless of data collection method, and for front head 
aspects taken using a camera and lens (CDF = 0.58–0.71). 
Data collected using a camera and lens had a higher propor-
tion of the highest quality images (lens = 0.62, scope = 0.27) 
and in general, the highest performance for each software 
came from using data collected with a camera and lens 
(Fig. 2).

In Wild-ID, front head aspects performed highest; when 
only visually inspecting the top ranked potential match, the 
CDF was 0.58, translating to a false-rejection rate (FRR; 
1-CDF) of 0.42. When the top 20 ranked potential matches 
were visually inspected, the CDF reached the highest 
recorded in this study 0.71 (with an associated FRR of 0.29). 
Conversely, ExtractCompare performed best with left head 
aspects  (CDF1 = 0.36 with a FRR of 0.64,  CDF20 = 0.55 with 
a FRR of 0.45). Indeed, by rank 10, the uncertainty around 
the CDF for ExtractCompare overlapped with that of Wild-
ID.  I3S Pattern performed poorly in most scenarios except 

for in trials which used front head aspects. As with Wild-ID, 
the highest  CDF1 for  I3S Pattern was recorded from front 
head aspects taken using a camera and lens  (CDF1 = 0.30 
with a FRR of 0.70). The performance of front head aspects 
taken using a camera and scope however was much more 
comparable to that of Wild-ID.

With all processing stages combined, Wild-ID had the 
highest data processing rate (i.e. the least amount of time 
per image processed, mean  ±  sd mm:ss, 00:22 ± 00:04), 
followed by  I3S Pattern (00:31 ± 00:04) and ExtractCom-
pare (01:36 ± 00:08, Table 2). For ExtractCompare, the vast 
proportion of time was spent in the pattern extraction stage 
(01:01 ± 00:06, 64% of total time) where images were anno-
tated, and the three-dimensional model was applied. The 
remaining time was spread across cropping (00:09 ± 00:04, 
9%), input (00:08 ± 00:02, 8%), comparison (00:05 ± 00:01, 
5%) and confirmation stages (00:12 ± 00:02, 13%). The data 
processing in  I3S Pattern was shorter than ExtractCom-
pare and cropping was not required prior to data entry. For 
Wild-ID, images were cropped prior to entry which took 
the greatest proportion of time (00:16 ± 00:04, 73%). Data 
input and pattern extraction stages were combined into one 
(< 00:01 ±  < 00:01, 4%) and were followed by short com-
parison (00:01 ±  < 00:01, 5%) and confirmation stages 
(00:04 ± 00:01, 18%).

Table 1  The cumulative density function and 95% confidence intervals for potential matches ranked in first position  (CDF1), and within the top 
5, 10 and 20 ranks  (CDF5,  CDF10, and  CDF20 respectively)

n is the number of individuals in each database, Db (number of images = 2n). Flank aspects were not available from the lens data (as often the 
photographer was too close to the seal to capture the entire body) and front head aspects cannot be processed in the current ExtractCompare har-
bour seal model

Trial Db Method Aspect n Software CDF1 CDF5 CDF10 CDF20

1 A Scope Front head 103 I3S pattern 0.18 (0.11, 0.27) 0.28 (0.20, 0.38) 0.35 (0.26, 0.45) 0.44 (0.34, 0.54)
2 A Scope Front head 103 Wild-ID 0.34 (0.25, 0.44) 0.47 (0.37, 0.57) 0.49 (0.39, 0.59) 0.54 (0.44, 0.64)
3 B Lens Front head 103 I3S pattern 0.30 (0.21, 0.40) 0.38 (0.28, 0.48) 0.43 (0.33, 0.53) 0.53 (0.43, 0.63)
4 B Lens Front head 103 Wild-ID 0.58 (0.48, 0.68) 0.68 (0.58, 0.77) 0.70 (0.60, 0.79) 0.71 (0.61, 0.79)
5 C Scope Left head 175 ExtractCompare 0.29 (0.23, 0.36) 0.41 (0.34, 0.49) 0.45 (0.37, 0.52) 0.49 (0.42, 0.57)
6 C Scope Left head 175 I3S pattern 0.03 (0.01, 0.07) 0.05 (0.02, 0.10) 0.07 (0.04, 0.12) 0.12 (0.08, 0.18)
7 C Scope Left head 175 Wild-ID 0.49 (0.41, 0.56) 0.61 (0.53, 0.68) 0.63 (0.56, 0.71) 0.65 (0.58, 0.72)
8 D Lens Left head 178 ExtractCompare 0.36 (0.29, 0.43) 0.43 (0.36, 0.51) 0.48 (0.40, 0.55) 0.55 (0.47, 0.63)
9 D Lens Left head 178 I3S pattern 0.05 (0.02, 0.09) 0.09 (0.05, 0.14) 0.11 (0.07, 0.17) 0.18 (0.13, 0.24)
10 D Lens Left head 178 Wild-ID 0.53 (0.46, 0.61) 0.60 (0.53, 0.67) 0.62 (0.55, 0.69) 0.66 (0.59, 0.73)
11 E Scope Left neck 148 ExtractCompare 0.30 (0.23, 0.38) 0.39 (0.31, 0.47) 0.44 (0.36, 0.52) 0.47 (0.38, 0.55)
12 E Scope Left neck 148 I3S pattern 0.03 (0.01, 0.08) 0.10 (0.06, 0.16) 0.17 (0.11, 0.24) 0.23 (0.16, 0.31)
13 E Scope Left neck 148 Wild-ID 0.53 (0.44, 0.61) 0.57 (0.49, 0.66) 0.62 (0.54, 0.70) 0.64 (0.56, 0.72)
14 F Lens Left neck 148 ExtractCompare 0.24 (0.17, 0.31) 0.30 (0.23, 0.38) 0.32 (0.24, 0.40) 0.40 (0.32, 0.48)
15 F Lens Left neck 148 I3S pattern 0.02 (0.004, 0.06) 0.05 (0.02, 0.10) 0.09 (0.05, 0.15) 0.14 (0.08, 0.20)
16 F Lens Left neck 148 Wild-ID 0.45 (0.36, 0.53) 0.53 (0.44, 0.61) 0.56 (0.48, 0.64) 0.60 (0.52, 0.69)
17 G Scope Left flank 65 ExtractCompare 0.31 (0.20, 0.43) 0.34 (0.23, 0.47) 0.42 (0.29, 0.54) 0.45 (0.30, 0.55)
18 G Scope Left flank 65 I3S pattern 0.02 (0.0004, 0.08) 0.03 (0.004, 0.11) 0.09 (0.03, 0.19) 0.22 (0.12, 0.33)
19 G Scope Left flank 65 Wild-ID 0.48 (0.35, 0.60) 0.55 (0.43, 0.68) 0.63 (0.50, 0.75) 0.66 (0.53, 0.77)
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Fig. 2  The cumulative density function (CDF) of the matches 
detected by ranked similarity score. Trials were run for each pattern 
recognition software: ExtractCompare (yellow),  I3S Pattern (blue) 

and Wild-ID (red), by data collection equipment (scope, lens) and 
seal aspect (front head, left head, left neck, left flank). Shaded areas 
represent 95% confidence intervals based on the binomial distribution

Table 2  Data processing rate (time in minutes: seconds for a single image to be processed, from pre-processing to visual confirmation)

Trials correspond to Table 1
n is the number of individuals within each database (number of images = 2n)
Timed stages were crop (image cropping), input (data input), extract (pattern extract), compare (pattern comparison), and confirm (visual confir-
mation)
In  I3S Pattern, the stages from data input to visual confirmation were combined into a single step, represented below by merged cells

Software Trial Method Aspect n Crop Input Extract Compare Confirm Overall

ExtractCompare 5 Scope Left head 175 00:10 00:07 00:53 00:05 00:10 01:25
8 Lens Left head 178 00:10 00:11 00:59 00:06 00:13 01:39
11 Scope Left neck 148 00:10 00:07 01:10 00:06 00:12 01:45
14 Lens Left neck 148 00:09 00:09 01:03 00:05 00:15 01:40
17 Scope Left flank 65 00:10 00:08 00:59 00:03 00:12 01:32

I3S pattern 1 Scope Front head 103 NA 00:33 00:33
3 Lens Front head 103 NA 00:31 00:31
6 Scope Left head 175 NA 00:35 00:35
9 Lens Left head 178 NA 00:31 00:31
12 Scope Left neck 148 NA 00:22 00:22
15 Lens Left neck 148 NA 00:31 00:31
18 Scope Left flank 65 NA 00:33 00:33

Wild-ID 2 Scope Front head 103 00:16  < 00:01 00:01 00:06  < 00:01 00:22
4 Lens Front head 103 00:15  < 00:01 00:01 00:03  < 00:01 00:19
7 Scope Left head 175 00:14  < 00:01 00:01 00:04  < 00:01 00:20
10 Lens Left head 178 00:14 00:01 00:01 00:06 00:01 00:21
13 Scope Left neck 148 00:15 00:01 00:01 00:05 00:01 00:22
16 Lens Left neck 148 00:14 00:01 00:02 00:05 00:01 00:21
19 Scope Left flank 65 00:25  < 00:01 00:01 00:05  < 00:01 00:31
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Discussion

The highest performing pattern recognition software 
tested for harbour seal photo ID was Wild-ID, followed 
by ExtractCompare and then  I3S Pattern. The strength of 
this trend varied with the data collection method and the 
aspect of the body that the pattern was compared from. 
Importantly, Wild-ID also required the least amount of 
time to run a single image through the stages from pre-
processing to match confirmation. The highest recorded 
CDF, and therefore the lowest FRR, was recorded in Wild-
ID for front head aspects collected using a camera and 
lens  (CDF20 = 0.71, FRR = 0.29). This error is within a 
range deemed acceptable for the estimation of population 
parameters (Hiby et al. 2013).

In the present study, photo ID data were either collected 
from a platform 50–150 m away from the seal (using a 
digiscope) or from a boat within 10 m of the seal (using 
a lens). The data collection method was therefore used as 
a proxy for distance to haulout, which has been shown to 
influence image quality (Bendik et al. 2013). In this study, 
within each aspect, data collected using a lens performed 
marginally better than data collected using a scope. Pre-
vious photo ID studies have found that image quality has 
influenced the performance of pattern recognition algo-
rithms. In ExtractCompare for harbour seals, the false-
rejection rate has been shown to decrease from 73 to 2% 
by increasing image quality alone (Hastings et al. 2008). 
Similar trends have been reported for  I3S Pattern (Stein-
metz et al. 2018) and Wild-ID (Bendik et al. 2013). Hal-
loran et al. (2015) investigated the effect of image quality 
further and found that the only variable which affected the 
ability of Wild-ID to detect matches between images of 
Thornicroft’s giraffe (Giraffa camelopardalis thornicrofti) 
was background complexity. This effect could therefore be 
reduced by cropping the images or by digitally removing 
the background entirely (Bolger et al. 2012; Chehrsimin 
et al. 2018).

The patterned surface of a seal’s pelage is non-planar 
and can appear very different depending on the animal’s 
orientation and torsion (Hiby and Lovell 1990). This is 
most pronounced on regions such as the neck and flank, 
whereas the region around the head is less susceptible to 
this distortion. Additionally, repeatability in the manual 
placement of the pattern cell is easier in the head region 
due to the proximity of obvious morphological features 
(i.e. eyes, ears, nose). In this study, ExtractCompare per-
formed best with left head aspects. In previous studies, 
ExtractCompare has been shown to perform well for har-
bour seals using the shoulder/neck regions (Cunningham 
2009) and ventral aspects (Hastings et al. 2008). The neck 
aspect is a larger region than the head and so contains 

more of an individual’s unique “fingerprint”, but it is also 
possibly more difficult to standardise across images. Ven-
tral aspects were underrepresented in our dataset given 
the haulout behaviour of seals at the sites in this study, 
although it would be interesting to explore whether the 
performance of ExtractCompare, along with  I3S Pattern 
and Wild-ID, could be improved for northeast Atlantic 
harbour seal photo ID if images of the ventral side of the 
animals could be collected.

Conversely, we found that both Wild-ID and  I3S Pattern 
performed best for harbour seal photo ID using front head 
aspects. Previous studies have found  I3S Pattern to perform 
highly in the photo ID of green turtles (Chelonia mydas; Den 
Hartog and Reijns 2014), Hawksbill turtles (Eretmochelys 
imbricate, Steinmetz et  al. 2018) and Tarentola geckos 
(Rocha et al. 2013), the natural patterning of all are found 
on rigid body parts (e.g. carapace scutes). The fore-head 
region of a harbour seal is also relatively rigid, and so best 
satisfies the assumption within  I3S Pattern that animals have 
linearity (i.e. their body parts do not move in respect to one 
another; Den Hartog and Reijns 2014).

When choosing a pattern recognition software to assist 
in the analysis of photo ID data, the ability of the software 
to detect a match is important, but often the amount of time 
required to process data is also crucial. Pattern matching 
algorithms have dramatically reduced the number of images 
which need to be visually inspected to find a match (Hast-
ings et al. 2001; Morrison et al. 2011). This is important for 
long-term population studies that rely on detecting matches 
between thousands of images which would not be feasi-
ble though manual matching alone. In this study, the time 
required to process a single image using Wild-ID was on 
average 22 s, compared with 31 s in  I3S Pattern and 1m36s in 
ExtractCompare; the processing time of images in Extract-
Compare was  > 4 × greater than in Wild-ID. However, it is 
important to note that data processing included both manual 
and automated stages, and time can be saved by running 
automated stages overnight or alongside other tasks.

We tested the ability of the software algorithms to not 
only detect a positive match but also to rank it higher 
than non-matching images. The time required to manu-
ally inspect each potential match can be substantial and 
so often thresholds are assigned, below which potential 
matches are rejected without inspection. In ExtractCom-
pare, previous studies have assigned thresholds on simi-
larity scores of 0.95 (Hiby et al. 2013) and 0.75 (Langley 
et al. 2020) for grey seal photo ID, and 0.45 for cheetah 
photo ID (Kelly 2001). In  I3S Pattern, it has been more 
common to assign a threshold on the number of potential 
matches that are visually inspected (e.g. 50, Rocha et al. 
2013; Steinmetz et al. 2018). Previous studies which use 
Wild-ID have also assigned thresholds on the similarity 
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scores generated, and for species that can be easily manip-
ulated, cleaned and posed against white backgrounds (e.g. 
Amphibians, Bardier et al. 2017), similarity scores are 
consistently predictive of positive matches (Bendik et al. 
2013). However, with other taxa there is evidence that the 
similarity scores in Wild-ID can be affected by allometric 
variation; i.e. when individuals are still growing (Bardier 
et al. 2017), and in these cases the time between photo-
graphs can reduce similarity scores (Bendik et al. 2013). 
In this study our data were limited to adult harbour seals, 
but it would be useful to test the performance of pattern 
recognition software in detecting matches between pups, 
juveniles and adults; as has been successful using Extract-
Compare for grey seals (Paterson et al. 2013).

Setting thresholds for manual review can significantly 
increase the efficiency of data processing but comes with 
associated false-rejection rates (Hiby et al. 2013). These 
errors are not consistent across studies and/or sub-species, 
with previous harbour seal photo ID analyses using Extract-
Compare reporting error rates of 6.2% (Hastings et al. 2001) 
and 21.4% (McCormack 2015). False-rejection rates for  I3S 
Pattern and Wild-ID are not available for harbour seals but 
are low for the species that the algorithms were initially 
designed for. For example, the false rejection rate (using 
only the top ranked potential match) for the photo ID of 
green turtles (Chelonia mydas) in  I3S Pattern was 14% (Den 
Hartog and Reijns 2014), and for Masai giraffe (Giraffa 
camelopardalis tippelskirchi) photo ID in Wild-ID was 0.7% 
(Bolger et al. 2012). False-rejection rates are therefore vari-
able and can be influenced by the experience of software 
users (Bolger et al. 2012) and the number of images from 
the same individuals (Hiby et al. 2013), along with variables 
tested in this study.

In this study we compared the performance of three freely 
available software, but there are additional software algo-
rithms available; these include, but are not limited to, ICEIS/ 
Hotspotter (Crall et al. 2013), Discovery (Gailey and Karc-
zmarski 2012) and StripeSpotter (Lahiri et al. 2011). Inves-
tigation into the performance of other software algorithms 
for harbour seal photo ID, and their comparison to Wild-ID, 
would be a valuable next step. Beyond that, as ecological 
research becomes increasingly data-heavy, methods such as 
photo ID lend themselves to automation. Existing photo ID 
databases are required to train algorithms to automatically 
locate a seal within an image (i.e. segmentation, Chehrsimin 
et al. 2018), extract pelage pattern, describe this pattern and 
then compare it to a library of known individuals. As it 
stands, artificial intelligence for pattern recognition requires 
manually annotated databases. There is also a strong argu-
ment for manual confirmation of detected matches, at least 
until the error rates are below an accepted threshold. How-
ever, at the very least, automating the data pre-processing 

and input stages will help to improve the efficiency of pat-
tern recognition software further.
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